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Periodic Homogenization for Hypoelliptic Diffusions
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We study the long time behavior of an Ornstein–Uhlenbeck process under the
influence of a periodic drift. We prove that, under the standard diffusive rescal-
ing, the law of the particle position converges weakly to the law of a Brownian
motion whose covariance can be expressed in terms of the solution of a Pois-
son equation. We also derive upper bounds on the convergence rate in several
metrics.
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1. INTRODUCTION

In this paper we study the long time behavior of solutions of the following
Langevin equation:

τ ẍ(t)=v(x(t))− ẋ(t)+σ β̇(t) , x(t)∈R
n , (1.1)

where β(t) is a standard Brownian motion and σ, τ > 0. The parame-
ter τ can be thought of as a nondimensional particle relaxation time,
which measures the inertia of the particle. The drift term v is taken to be
smooth, periodic with period 1 in all directions; further, it is assumed that
it satisfies an appropriate centering condition.

It is well known that as τ tends to 0, and provided that v(x) is
Lipschitz continuous, the solution of (1.1) converges with probability 1 to
the solution of the Smoluchowski equation

ż(t)=v(z(t))+σ β̇(t) , x(t)∈R
n , (1.2)
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uniformly over every finite time interval, see e.g. ref. 17. The prob-
lem of homogenization for equation (1.2) has been studied extensively
over the last three decades for periodic(2,4,20) as well as
random(5,13,15) drifts. For the case where v(z) is a smooth, periodic field
which is centered with respect to the invariant measure of the process,
it is not hard to prove(4) that the rescaled process εz(t/ε2) converges, as
ε tends to 0, to a Brownian motion with a positive definite covariance
matrix K. The proof of this functional central limit theorem is based on
the proof of a spectral gap for the generator of the process z(t).

The long time behavior of particles with non–negligible inertia, whose
evolution is governed by equation (1.1) has been investigated by Freid-
lin and coworkers in a series of papers(8–11). Among other things, Ham-
iltonian systems under weak deterministic and random perturbations were
studied in these papers:

τ ẍ=−∇V (x)+ ε(−κẋ+γ )+√
εσ β̇, (1.3)

with κ, γ ∈ R. It was shown that, under appropriate assumptions on the
potential V (x), the rescaled process {x(t/ε), y(t/ε)} converges weakly to a
diffusion process on a graph corresponding to the Hamiltonian of the sys-
tem H = 1

2τ ẋ
2 +V (x).

On the other hand, the problem of homogenization for (1.1) has
been investigated less. This is not surprising since the hypoellipticity of
the generator of the process (1.1) renders the derivation of the nec-
essary spectral gap estimates more difficult. Homogenization results for
the solution x(t) of (1.1) have been obtained, to our knowledge, only
for the case where the drift v(x) is the gradient of a potential. In
this case the invariant measure of the process {x(t), ẋ(t)} is explicitly
known and this fact simplifies considerably the analysis. This problem
was analyzed for periodic(23) as well as random potentials.(22) In both
cases it was shown that the particle position converges, under the diffu-
sive rescaling, to a Brownian motion with a positive covariance matrix
K. The proofs of these homogenization theorems are based on the tech-
niques developed for the study of central limit theorems for additive
functionals of Markov processes(14), together with a regularization proce-
dure for appopriate degenerate Poisson equations. Related questions for
subelliptic diffusions have also been investigated.(18,19,3)

The purpose of this paper is to prove a central limit theorem for the
solution of the Langevin equation (1.1) with a general periodic smooth
drift v(x) and, further, to obtain bounds on the convergence rate. The
proof of our homogenization theorem relies on the strong ergodic proper-
ties of hypoelliptic diffusions. The techniques developed in refs. 6, 7 enable
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us to prove the existence of a unique, smooth invariant measure for (1.1)
and to obtain precise estimates on the solution of the Poisson equation
−Lf =g, where L is the generator of the process (1.1) and the function
g is smooth and centered with respect to the invariant measure. Based on
these estimates it is rather straightforward to show that the rescaled par-
ticle position εx(t/ε2) converges to a Brownian motion, using the tech-
niques developed in ref. 14. Obtaining bounds on the rate of convergence
requires more work. For this, we need to identify the limiting Brownian
motion and to introduce an additional Poisson equation. Furthermore, we
need to control the 1-Wasserstein distance between two probability mea-
sures by the distance between their characteristic functions. This is accom-
plished using ideas from refs. 12, 25.

The sequel of this paper is organized as follows. In section 2 we intro-
duce the notation that we will be using throughout the paper and we pres-
ent our main result, Theorem 2.1. In section 3 we prove various estimates
on the invariant measure of (1.1) and the solution of the cell problem, and
we also derive estimates on moments of the particle velocity. The proof of
Theorem 2.1 is presented in section 4. Finally, section 5 is reserved for a
few concluding remarks.

2. NOTATION AND RESULTS

Consider the following Langevin equation in R
n:

τ ẍ(t)=v(x(t))− ẋ(t)+σ β̇(t) , (2.1)

with initial conditions x(0)= x, ẋ(0)= (
√
τ)−1y. We assume throughout

this paper that v∈C∞(Tn). Introducing y(t)=√
τ ẋ(t), we rewrite (2.1) as

a first order stochastic differential equation:

dx(t)= 1√
τ
y(t) dt,

dy(t)= 1√
τ
v(x(t)) dt− 1

τ
y(t) dt+ σ√

τ
dβ(t) .

(2.2)

We denote by L the generator of the process {x(t), y(t)}:

L= 1√
τ

(
y ·∇x +v(x) ·∇y

)+ 1
τ

(
−y ·∇y + σ 2

2
�y

)
. (2.3)

By Theorem 3.1 below, the process {x(t), y(t)} admits a unique, smooth
invariant measure, denoted by µ(dx, dy).
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Consider now the Poisson equation

−L�= 1√
τ
y . (2.4)

This equation is posed on T
n × R

n. In accordance to the terminology of
periodic homogenization, we will be referring to equation (2.4) as the cell
problem, even though its solutions are periodic only with respect to x. This
equation has a unique, smooth solution in the appropriate function space
by Theorem 3.3, provided that

∫
v(x) ν(dx, dy)=0. We define the symmet-

ric, positive n×n matrix K such that

K2 = σ 2

τ

∫
∇y�⊗∇y�dµ . (2.5)

The main result of this paper is that the particle position, under the
standard diffusive rescaling, converges weakly to a Brownian motion with
covariance K2. We furthermore give upper bounds on the rate of conver-
gence in the following metrics.

Let B denote a separable Banach space and B∗ be its dual space.
Given two measures µ1 and µ2 on B, we also denote by C(µ1,µ2) the set
of all measures on B2 with marginals µ1 and µ2. With these notations, we
define the following metric on the space of probability measures on B with
finite p-moment:

|||µ1 −µ2|||pp= sup

∈B∗

inf
µ∈C(µ1,µ2)

∫
B2

|
(x)−
(y)|p
‖
‖p µ(dx, dy) . (2.6)

This distance is close in spirit to the p-Wasserstein distance

|||µ1 −µ2|||pp,W = inf
µ∈C(µ1,µ2)

∫
B2

‖x−y‖p µ(dx, dy) ,

so we will refer to it as the weak p-Wasserstein distance. Note that the
distance (2.6) gives a locally uniform bound on the distance between char-
acteristic functions χµ(
)=

∫
ei
(x) µ(dx):

|χµ1(
)−χµ2(
)|�‖
‖ |||µ1 −µ2|||p . (2.7)

In particular one has |||µ1 −µ2|||p=0 if and only if µ1 =µ2.
In order to simplify notations, we define the fast processes yεt =

y(ε−2t) and xεt =x(ε−2t). We will also from now on use the notation
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B =C([0, T ],Rn), for a value T > 0 that remains fixed throughout this
paper. Moreover, we define by πk : B → C([0, T ],R) the projection given
by

(
πkx

)
(t)=〈k, x(t)〉. Given a measure µ on a space M and a measur-

able function f : M→N , we denote by f ∗µ the measure on N given by(
f ∗µ

)
(A)=µ(f−1(A)).

Now we are ready to state the homogenization theorem.

Theorem 2.1. Let x(t) be the solution of (2.1), in which the veloc-
ity field v∈C∞(Tn) satisfies

∫
v(x) ν(dx, dy)=0. For T >0 fixed, denote by

µε the measure on B given by the law of the rescaled process εxεt and by
µ the law of a Brownian motion on R

n with covariance K2 as defined in
(2.5). Then µε converges weakly to µ and one has the following bounds
on the convergence rate.

• For every p�1 and α∈
(

0, 1
2

)
, there exists a constant C such that

|||µε−µ|||p �Cεα , (2.8)

for every ε∈ (0,1).
• For every p�1 and α∈

(
0, 1

2

)
, there exists a constant C such that

∣∣∣∣∣∣π∗
k µε−π∗

k µ
∣∣∣∣∣∣
p,W

�Cεα , (2.9)

for every k∈R
n with ‖k‖�1 and every ε∈ (0,1).

• For every β < 1
20(n+3)2

, there exists a constant C such that

|||µε−µ|||1,W �Cεβ , (2.10)

for every ε∈ (0,1).
Remark 2.2. The condition

∫
v(x) ν(dx, dy)= 0 ensures that there

is no ballistic motion involved. In the general case, one can write
v̄= ∫ v(x) ν(dx, dy) and define εxεt = εx(ε−2t)− ε−1v̄t . Then, Theorem 2.1
holds for εxεt .

Remark 2.3. If n=1, the bound (2.9) is much stronger than the
bounds (2.8) and (2.10). If n>1 however, this bound does not imply any
form of convergence µε⇒µ. It is indeed possible to construct two Gauss-
ian stochastic processes x(t) and y(t) with values in R

2 such that the law
of x differs from the law of y and such that, for every k∈R

2, the law of
〈k, x〉 is identical to the law of 〈k, y〉. As an example, choose three i.i.d.
Gaussian centered random variables a1, a2, a3 and define
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x1(t1)=a1 x2(t1)=a2 x1(t2)=a3 x2(t2)=a1

y1(t1)=a1 y2(t1)=a2 y1(t2)=a2 y2(t2)=a3 .

It is an easy exercise to check that these two processes possess the required
properties.

Remark 2.4. Convergence in the weak p-Wasserstein distance alone
does not imply weak convergence, as the space of probability measures on
B is not complete under ||| · |||p. This can be seen by taking B = 
2 and
choosing for µn the Gaussian measure with covariance

Qn=diag
(
1, 1

2 , . . . ,
1
n
,0, . . .

)
.

It is straightforward to check that this forms a Cauchy sequence with
respect to ||| · |||p, but does not converge to any measure supported in 
2.
(It does however converge weakly to a limiting measure in a weaker topol-
ogy, and this is always the case.) In our situation, the additional control
we have on the regularity of the processes involved allows to overcome this
problem.

Remark 2.5. The covariance, or effective diffusivity, K2 of the limit-
ing Brownian motion depends on the σ and τ . It is shown in ref. 21 that
as τ tends to 0 the covariance K2 converges to the one obtained from the
homogenization of equation 1.2. We refer to ref. 21 for further properties
of the effective diffusivity, together with numerical experiments for various
fields v(x).

Remark 2.6. For simplicity, we choose the molecular diffusion σ to
be a constant scalar. Taking for σ a positive definite matrix would only
require a slight change in our notations. We could even allow σ to depend
on x in a smooth way, as long as it remains strictly positive definite for all
x ∈T

n. The results from refs. 6, 7 then still apply and one can check that
all the bounds obtained in section 3 still hold. Since the proof of Theorem
2.1 itself never uses the fact that σ is constant, all of our results immedi-
ately carry over to this case.

Remark 2.7. For simplicity, we assumed the initial condition (x, y)

to be deterministic. However, it is easy to check that all our arguments
work for randomly distributed initial conditions provided that they are
independent of the driving noise and that E exp 1

2‖σ−1y‖2<∞.

Remark 2.8. One may wonder if it is possible to show convergence
of µε to µ in a stronger topology, like the one given by the total variation
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distance. Since the sample paths of the Brownian motion are almost surely
not differentiable, whereas t �→εxεt almost surely is, the measures µε and µ
are actually mutually singular for every ε>0. Concerning the distributions
for a fixed time t , one expects from a formal expansion that the density
of the law of εxεt is given by µtε(x)=µt(x)ρ(ε−1x)+O(ε), where ρ is the
periodic continuation of the density of the marginal (on the first compo-
nent) of the invariant measure for the diffusion (2.2). It is straightforward
to check that, unless ρ is constant, the total variation distance (i.e. the L1

distance between densities in this case) between µt(x)ρ(ε−1x) and µt(x)

does not converge to 0 as ε→0.

The proof of Theorem 2.1 will be presented in section 4.

3. PRELIMINARY ESTIMATES

In this section we collect various estimates which are necessary for the
proof of the homogenization theorem. In section 3.1 we study the structure
of the invariant measure ν for (2.1). We show that it possesses a smooth
density with respect to the Lebesgue measure and we derive sharp bounds
for it. Further, we investigate the solvability of the Poisson equation

−Lf =h,

where h is a smooth function of x and y which is centered with respect to
ν. We prove that equation (3.1) has a smooth solution which is unique in
the class of functions which do not grow too fast at infinity.

In section 3.2 we derive estimates on exponential moments of the
particle velocity. Roughly speaking, these estimates imply that the particle
velocity grows very slowly with time.

3.1. Bounds on the Invariant Measure and on the Solution of the

Poisson Equation

If v= 0, the invariant measure for (2.1) is given by ν= e−
‖y‖2

σ2 dx dy.
This is “almost” true also in the case v =0, as can be seen by the follow-
ing result.

Theorem 3.1. Let ν be the invariant measure for (2.1) and denote
by ρ(x, y) its density with respect to the Lebesgue measure. Then, for
every δ∈ (0,2σ−2) one can write

ρ(x, y)= e− δ
2 ‖y‖2

g(x, y) , g∈S, (3.1)

where S denotes the Schwartz space of smooth functions with fast decay.
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Proof. The proof follows the lines of refs. 6, 7. Denote by φt the
(random) flow generated by the solutions to (2.1) and by Pt the semigroup
defined on finite measures by

(Ptµ)(A)=E
(
µ◦φ−1

t

)
(A) .

Since ∂t + L is hypoelliptic, Pt maps every measure into a measure with
a smooth density with respect to the Lebesgue measure. It can therefore
be restricted to a positivity preserving contraction semigroup on L1(Tn×
R
n, dx dy). The generator L̃ of Pt is given by the formal adjoint of L

defined in (2.3).
We now define an operator K on L2(Tn × R

n, dx dy) by closing the
operator defined on C∞

0 by

K=−e δ2 ‖y‖2L̃e− δ
2 ‖y‖2

. (3.2)

The operator K is then given by

K=−σ
2

2τ
�y + δ

τ

(
1− δσ 2

2

)
‖y‖2 + 1

τ

(
δσ 2 −1

)(
y ·∇y + n

2

)
+ 1√

τ

(
y ·∇x +v(x) ·∇y

)− n

2τ
.

Note at this point that δ < 2σ−2 is required to make the coefficient of
‖y‖2 in this expression strictly positive. This can be written in Hörmand-
er’s “sum of squares” form as

K=
2n∑
i=1

X∗
i Xi +X0 ,

with

Xi = σ√
2τ
∂yi if i=1 . . . n,

Xi =
√
δ

τ

(
1− δσ 2

2

)
yi−n if i= (n+1) . . .2n,

X0 = 1
τ

(
δσ 2 −1

)(
y ·∇y + n

2

)
+ 1√

τ

(
y ·∇x +v(x) ·∇y

)− n

2τ
.
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Since v is C∞ on the torus, it can be checked in a very straightforward
way that the assumptions of ref. 6, Theorem 5.5, are satisfied with �2 =
1 −�x −�y + ‖y‖2. Combining this with ref. 6, Lemma 5.6, we see that
there exists α>0 such that, for every γ >0, there exists a positive constant
C such that

‖�α+γ f ‖�C
(‖�γKf ‖+‖�γ f ‖) , (3.3)

holds for every f in the Schwartz space. Looking at (3.3) with γ = 0,
we see that K has compact resolvent. Since e−

δ
2 ‖y‖2

is an eigenfunction
with eigenvalue 0 for K∗, it follows that K has also an eigenfunction with
eigenvalue 0, let us call it g. It follows from (3.3) and a simple approxima-
tion argument that ‖�γ g‖<∞ for every γ >0, and therefore g belongs to
the Schwartz space. Furthermore, an argument given for example in ref. 7,
Prop 3.6 shows that g must be positive. Since one has furthermore

L̃e− δ
2 ‖y‖2

g=0 ,

the function ρ given by (3.1) is the density of the invariant measure of
(2.1). This concludes the proof of Theorem 3.1.

Before we give bounds on (2.4), we show the following little lemma.

Lemma 3.2. Let δ ∈ (0,2σ−2) and let K be as in (3.2). Then, the
kernel of K is one-dimensional.

Proof. Let g̃∈ kerK. Then, by the same arguments as above, e−
δ
2 ‖y‖2

g̃

is the density of an invariant signed measure for Pt . The ergodicity of Pt
immediately implies g̃∝g.

Now we are ready to prove estimates on the solution of the Poisson equa-
tion (3.1).

Theorem 3.3. Let h∈C∞(Tn×R
n) with Dαx,yh∈L2(Tn×R

n; e−ε‖y‖2

dxdy) for every multiindex α and every ε > 0. Assume further that∫
h(x, y) ν(dx dy)= 0, where ν is the invariant measure for (2.1). Then,

there exists a function f such that (3.1) holds. Moreover, for every δ >0,
the function f satisfies

f (x, y)= e δ2 ‖y‖2
f̃ (x, y) , f̃ ∈S . (3.4)

Furthermore, for every δ ∈ (0,2σ−2), f is unique (up to an additive con-
stant) in L2(Tn×R

n, e−δ‖y‖2
dxdy).
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Proof. By hypoellipticity, if there exists a distribution f such that
(2.4) holds, then f is actually a C∞ function.

We start with the proof of existence. Fix δ ∈ (0,2σ−2), consider the
operator K∗ which is the adjoint of the operator K defined in (3.2), and
define the function

u(x, y)=h(x, y) e− δ
2 ‖y‖2

.

It is clear that if there exists f̃ such that K∗f̃ =u, then f = e δ2 ‖y‖2
f̃ is a

solution to (3.1). Consider the operator K∗K. By the considerations in the
proof of Theorem 3.1, K∗K has compact resolvent. Furthermore, the ker-
nel of K∗K is equal to the kernel of K, which in turn by Lemma 3.2 is
equal to the span of g. Define H=〈g〉⊥ and define M to be the restriction
of K∗K to H. Since K∗K has compact resolvent, it has a spectral gap and
so M is invertible. Furthermore, since Ly= τ−1/2v(x)− τ−1y, one checks
easily that f ∈H, therefore f̃ =KM−1u solves K∗f̃ =u and thus leads to
a solution to (3.1).

Since K∗ satisfies a similar bound to (3.3) and since ‖�γ u‖<∞ for
every γ >0, the bound (3.4) follows as in Theorem 3.1. The uniqueness of
u in the class of functions under consideration follows immediately from
Lemma 3.2.

Remark 3.4. Note that the solution f of (3.1) is probably not
unique if we allow for functions that grow faster than eσ

−2‖y‖2
.

Remark 3.5. The identity yL̃ρ=0, where L̃ is the formal adjoint of
L, immediately yields that

∫
y ν(dx, dy)= √

τ
∫
v(x) ν(dx, dy). In particu-

lar, the assumption that the drift is centered implies that y is also centered.
Moreover, y clearly satisfies the smoothness and fast decay assumptions of
Theorem 3.3. Hence, the theorem applies to each component of equation
(2.4) and we can conclude that there exists a unique smooth vector valued
function � which solves the cell problem and whose components satisfy
estimate (3.4).

3.2. Estimates on the Particle Velocity

One has the following bound

Lemma 3.6. There exists a constant γ >0 such that

E exp
(1

2
‖σ−1y(t)‖2

)
� exp

(1
2
‖σ−1y‖2 +γ t

)
,

E exp
( 1

8τ

∫ t

0
‖σ−1y(s)‖2 ds

)
� exp

(1
4
‖σ−1y‖2 + γ

2
t
)
.

holds for any initial condition y and every t >0.
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Proof. Itôs formula yields immediately the existence of a constant γ
such that

1
2
‖σ−1y(t)‖2 � 1

2
‖σ−1y‖2 +γ t

− 1
2τ

∫ t

0
‖σ−1y(s)‖2 ds+ 1√

τ

∫ t

0
〈σ−1y(s), dβ(s)〉 .

The first bound follows by exponentiating both sides and taking expecta-
tions. The second bound follows in a similar way after dividing both sides
by 2.

This yields the following:

Theorem 3.7. Let ψ : Tn×R
n→R be such that

sup
x∈Tn,y∈Rn

∣∣∣ψ(x, y) exp
(
−1

4
‖σ−1y‖2

)∣∣∣<∞ .

Then, there exist constants C, δ>0 such that

E
(
ψ(x(t), y(t))

)−∫
Tn×Rn

ψ(x, y) ν(dx, dy)�C exp
(‖σ−1y‖2 − δt) . (3.5)

Proof. From the smoothing properties of the transition semigroup
associated to (2.2), combined with its controllability and the fact that ‖y‖2

is a Lyapunov function, one gets the existence of constants C and δ′ such
that

‖Pt (x, y; · )−ν‖TV �C(1+‖y‖2)e−δ
′t .

(See e.g. ref. 16 for further details.). Here ‖µ−ν‖TV denotes the total var-
iation distance between the measures µ and ν. Cauchy-Schwarz further-
more yields the generic inequality

∣∣∣∫ f dµ−
∫
f dν

∣∣∣�
√

‖µ−ν‖TV

∫
f 2 (dµ+dν) (3.6)

The bound (3.5) immediately follows by combining Lemma 3.6
with (3.6).

We also have a much stronger bound on the supremum in time of the
solution:
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Lemma 3.8. For every κ > 0 and every T > 0, there exist constants
δ,C >0 such that

E sup
t∈[0,T ε−2]

exp
(
δ‖y(s)‖2)�Cε−κeδ‖y‖2

,

holds for every ε∈ [0,1].

Proof. Let ỹ be the Ornstein-Uhlenbeck process defined by

ỹ(t)= 1√
τ

∫ t

0
e−

t−s
τ σ dβ(s) .

Then (see e.g. ref. 1), there exists constants c1 and c2 such that

P
(

sup
t∈[s,s+T ]

‖ỹ(t)‖>λ
)

� c1e
−c2λ

2
,

for every s >0. This immediately yields

P
(

sup
t∈[0,T ε−2]

‖ỹ(t)‖>λ
)

� c1ε
−2e−c2λ

2
,

which in turn implies that there exist constants c3 and c4 such that

E
(

sup
t∈[0,T ε−2]

exp
(
c3‖ỹ(t)‖2))� c4ε

−2 .

The claim follows immediately by choosing δ = (c3κ)/2 and by noticing
that there exists a constant c4 such that ‖y(s)‖�‖ỹ(s)‖+‖y‖+ c4 for all
s >0 almost surely.

4. PROOF OF THEOREM 2.1

Proof. By Theorem 3.3 we have �(y, z)∈C∞(Tn×R
n,Rn), so we can

apply the Itô formula to the function �
(
yεt , x

ε
t

)
to obtain:

�
(
yεt , x

ε
t

)−�(y, x)= 1
ε2

∫ t

0
L�(yεs , xεs )ds+ 1

ε

σ√
τ

∫ t

0
∇y�

(
yεs , x

ε
s

)
dβε(s)

=− 1
ε2

1√
τ

∫ t

0
yεs ds+

1
ε

σ√
τ

∫ t

0
∇y�

(
yεs , x

ε
s

)
dβε(s) ,
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where we defined βε(t)=εβ(ε−2t) and we used (2.4) to get the second line.
We also interpret ∇y� as a linear map from R

n into R
n. Thus we have:

εxεt = εx+ 1
ε

1√
τ

∫ t

0
yεs ds

= εx− ε(�(yεt , xεt )−�(y, x))+ σ√
τ

∫ t

0
∇y�

(
yεs , x

ε
s

)
dβε(s)

=: εx+ εI ε1 (t)+Mε(t) . (4.1)

It follows from (3.4) and Lemma 3.8 that, for every p>0 there exists
a constant C such that

E sup
t∈[0,T ]

∣∣I ε1 (t)∣∣p �Cε−
p
2 .

It is therefore sufficient to show that (2.8) and (2.9) hold with µε replaced
by the law of the martingale term Mε. We first show that (2.8) holds. This
is equivalent to showing that, for every 
∈B∗ one can construct a random
variable B
 such that

E|B
−
(Mε)|p �Cεαp , (4.2)

holds uniformly over ‖
‖�1, and such the law of B
 is given by 
∗µ. We
therefore fix 
∈B∗ with ‖
‖�1, which we interpret as an R

n-valued mea-
sure with total mass (i.e. the sum of the masses of each of its components)
smaller than 1. We also use the notation 
t =
([t, T ]).

Integrating by parts, we can write


(Mε)=
∫ T

0
〈Mε(t), 
(dt)〉= σ√

τ

∫ T

0
〈
(t),∇y�

(
yεt , x

ε
t

)
dβε(t)〉 .

We now define on the interval [0, T ] the R-valued martingale Mε

 by

Mε

 (t)=

σ√
τ

∫ t

0
〈
(s),∇y�

(
yεs , x

ε
s

)
dβε(s)〉 .

According to the Dambis–Dubins–Schwartz theorem see ref. 24, Thm. 1.6,
there exists a Brownian motion B such that Mε


 (t) can be written as

Mε

 (t)=B

(〈Mε

 ,M

ε

 〉t
)=B(σ 2

τ

∫ t

0
〈
(s), (∇y�⊗∇y�

)(
yεs , x

ε
s

)

(s)〉ds

)
.
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On the other hand, the measure 
∗µ is a centered Gaussian measure
with variance

∫ T
0 〈
(s),K2
(s)〉ds, so we can choose B
 to be given by

B
=BT
 , Bt
=B
(∫ t

0
〈
(s),K2
(s)〉ds

)
.

We will actually show a stronger bound than (4.2), namely we will show
that

Jpε :=E sup
t∈[0,T ]

|Bt
−Mε

 (t)|p �Cεαp . (4.3)

We use the Hölder continuity of the Brownian motion B, together with
the Cauchy–Schwarz inequality to derive the estimate

Jpε �E
(

Hölpα(B) sup
0� t�T

∣∣∣∫ t

0
〈
(s),

(σ 2

τ

(∇y�⊗∇y�
)(
yεs , x

ε
s

)−K2
)

(s)〉ds

∣∣∣αp)

�
(
E Höl2pα (B)

) 1
2
(

E sup
0� t�T

∣∣∣∫ t

0
〈
(s),H (yεs , xεs ) 
(s)〉ds∣∣∣2αp) 1

2

�C
(

E sup
0� t�T

∣∣∣∫ t

0
〈
(s),H (yεs , xεs ) 
(s)〉ds∣∣∣2αp) 1

2
, (4.4)

where we introduced the n×n-matrix valued function

H(x, y)= σ 2

τ

(∇y�⊗∇y�
)
(y, x)−K2 .

In deriving the above estimate, we have used the fact that for α < 1
2 , the

α-Hölder constant of a Brownian motion is uniformly bounded on every
bounded interval (see ref. 24, Thm. 2.1).

Note now that since 
(t) is of bounded variation, 
(t)⊗ 
(t) is also
of bounded variation, so there exists a n×n-matrix valued measure 
̃ on
[0, T ] such that 
(t)⊗ 
(t)= 
̃([t, T ]). Therefore, we can integrate by parts
in (4.4) to obtain

Jpε �C
(

E sup
0 � t �T

∣∣∣Tr
∫ t

0

∫ s

0
H
(
yεr , x

ε
r

)
dr 
̃(ds)

∣∣∣2αp) 1
2

�C
(

E sup
0 � t �T

∥∥∥∫ t

0
H
(
yεs , x

ε
s

)
ds

∥∥∥2αp) 1
2

Consider now the Poisson equation

−LF =H . (4.5)
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By the definition of K2, we have
∫
H(x, y) ν(dx, dy)=0 (for each compo-

nent), and we furthermore have exp(−δ‖y‖2)H ∈S for every δ>0. There-
fore, using the same reasoning as in the proof of Theorem 3.3, equation
(4.5) has a unique smooth solution satisfying

F(x, y)= e δ2 ‖y‖2F̃(x, y) , F̃ ∈S (4.6)

for every δ>0. We can apply Itô formula to deduce as before that

∫ t

0
H(yεs , x

ε
s ) ds=−ε2(F(yεt , xεt )−F(y, x))+ ε√

τ

∫ t

0
∇yF (yεs , xεs ) σdβ(s) .

Therefore:

|Jpε |2 � ε4αpE sup
t∈[0,T ]

‖F(yεt , xεt )‖2αp

+ Cε2αpE sup
t∈[0,T ]

∥∥∥∫ t

0
∇yF (yεs , xεs ) dβ(s)

∥∥∥2αp
.

Combining Lemma 3.8 with (4.6), the first term can be bounded by

ε4αpE sup
t∈[0,T ]

‖F(yεt , xεt )‖2αp �Cε−2αp .

In order to control the second term, we use the Burkholder–Davis–Gundy
inequality followed by Hölder’s inequality, assuming that p> 1

α
:

E sup
t∈[0,T ]

∥∥∥∫ t

0
∇yF (yεs , xεs ) dβ(s)

∥∥∥2αp
�CE

(∫ T

0
‖∇yF (yεs , xεs )‖2 ds

)αp
�CT αp−1 sup

t∈[0,T ]
E‖∇yF (yεt , xεt )‖2αp .

This is bounded independently of ε by (4.6) and Lemma 3.6, and so
J
p
ε �Cεαp, for p > 1

α
. When p < 1

α
, one can bound J

p
ε using the higher

order moments. This completes the proof of bound (4.2) and thus of the
first part of Theorem 2.1.

The proof of the second part of Theorem 2.1 is obtained in a
straightforward way as a particular case of (4.3) if one makes the choice

=kδT .

We now turn to the proof of the third part of Theorem 2.1. For this,
we start with some background material from refs. 12, 25. Let PMp (R

n)



276 Hairer and Pavliotis

denote the set of all probability measures µ on R
n with finite pth moment

mp(µ) for some p>2 to be fixed later, and such that

mp(µ)�M .

Let ρ(µ1,µ2) denote the Prokhorov metric; we introduce the metrics

d1(µ1,µ2)= sup

∈Rn

|χµ1(
)−χµ1(
)|
|
|

and

‖µ1 −µ2‖∗
m= sup

{∣∣∣∣
∫
φ(z)d(µ1(z)−µ2(z))

∣∣∣∣ , φ ∈C∞,‖φ‖m�1
}
,

where ‖ · ‖m denotes the natural norm on Cm(Rn). Now, a trivial modifi-
cation of ref. 25, Thm. 2 gives

‖µ1 −µ2‖∗
n+2 �C(M)d1(µ1,µ2)

2
n+3 ,

where n is the dimension of the underlying space. Further, ref. 12, cor. 5.5
and ref. 25, Thm. 2 imply that

ρ(µ1,µ2)� cm
(‖µ1 −µ2‖∗

m

) 1
m+1

for every m>0 and

|||µ1 −µ2|||22,W �C(M)ρ(µ1,µ2)
p−2
p .

Let µεt and µt denote the laws of εxεt and the limiting Brownian motion
at time t respectively, i.e. the images of µε and µ under the map x �→x(t).
With these notations, the considerations above yield

Lemma 4.1. Let the assumptions of Theorem 2.1 hold. Then, for
every α∈ (0, 1

2 ) and every t ∈ [0, T ], we have:

∣∣∣∣∣∣µεt −µt
∣∣∣∣∣∣

1,W �Cε
α

2(n+3)2 .

Here, the constant C depends only on E exp 1
2‖σ−1y‖2.
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Proof. From Theorem 2.1 and (2.7) we have d1(µ1,µ2)�
∣∣∣∣∣∣µεt −µt

∣∣∣∣∣∣
1

�Cεα. Further, our bounds on the moments of the particle velocity imply
that M is bounded independenly of ε for every p > 0. The parameter δ
given by 1−δ= p−2

p
, can thus be chosen arbitrarily small. Thus, for ε suffi-

ciently small and δ>0, arbitrarily small we have:

∣∣∣∣∣∣µε−µ∣∣∣∣∣∣22,W �Cρ(µε,µ)1−δ �C
(‖µε−µ‖n+2

) 1−δ
n+3

�Cd1(µ
ε,µ)

1−δ
(n+3)2 �Cε

α(1−δ)
(n+3)2 ,

from which the estimate follows upon applying Cauchy–Schwarz inequal-
ity. The claim about the constant C is obtained by inspecting the bounds
from Section 3.

Fix now an integer N >0, define tj = jT /N , and define the map �N :
B → (Rn)N by (�Nx)j = x(tj ). We first show that, for every γ < 1

4(n+3)2
,

there exists a constant C such that

∣∣∣∣∣∣�∗
Nµε−�∗

Nµ
∣∣∣∣∣∣

1,W �CεγN2 , (4.7)

for every N >0. Lemma 4.1 indeed implies that if Pε
t denotes the tran-

sition probabilities for the process (εxεt , y
ε
t ), π2 denotes the projection

on the first component, and Pt denotes the transition probabilities for a
Brownian motion with covariance K, one has for every t ∈ [0, T ]

∣∣∣∣∣∣π∗
2 Pε

t (x, y; ·)−Pt (x, ·)
∣∣∣∣∣∣

1,W �C(y) εγ ,

where C(y) is such that EC(yεt ) is bounded uniformily for t ∈ [0, T ]. This
implies that one can construct a Brownian motion Bt with covariance K
such that

E‖εxεtj −Btj ‖�Cεγ +E‖εxεtj−1
−Btj−1‖ .

In particular, one has

E sup
j

‖εxεtj −Btj ‖�
N∑
j=0

E‖εxεtj −Btj ‖�CεγN2 ,

which implies (4.7) by definition.
Furthermore, the generalized Kolmogorov criteria (see ref. 24, Thm.

2.1) immediately implies that the α-Hölder constants of εxεt and of the
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limiting Brownian motion Bt are bounded independently of ε for every
α<1/2. Therefore,

|||µε−µ|||1,W �CεγN2 + C

Nα
.

Optimizing for N concludes the proof of Theorem 2.1.

5. CONCLUSIONS

The problem of homogenization for periodic hypoelliptic diffusions
was studied in this paper. It was proved that the rescaled particle position
converges to a Brownian motion with a covariance matrix which can be
computed in terms of the solution of the Poisson equation (2.4). Further,
upper bounds on the convergence rate in several norms were obtained.
Our analysis is purely probabilistic and this enables us to obtain more
detailed information than what one could obtain from studying the prob-
lem at the level of the Kolmogorov equation. The convergence rate in the
1-Wasserstein metric, estimate (2.10), is almost certainly not sharp, it is
however optimal in the sense that the p-Wasserstein metric is the strongest
“natural” metric in which convergence is expected to hold, see Remark
2.8.

A very interesting question is whether a homogenization theorem of
the form of Theorem 2.1 holds for random drifts v(x, t) and, if yes, under
what conditions on v(x, t). We plan to come back to this issue in a future
publication.
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